Electrolyte decomposition and solid electrolyte interphase revealed by mass spectrometry
نویسندگان
چکیده
Non-aqueous electrolyte liquids such as carbonate solvents have been widely employed in the commercial lithium-ion batteries and development of next-generation rechargeable batteries. The decomposition products organic additive molecules contribute to formation solid interphases (SEIs) on electrode surface, which key impacts battery's electrochemical performance. rational engineering systems demands precise understanding reaction pathways well electrolytes. Mass spectrometry (MS) is a well-established molecular analytical approach that can provide critical information for unambiguous structure assignment based its mass-resolving power. In recent years, application MS battery research has expanding rapidly, providing valuable insights about chemical species generated during operation evolution. This review aims summarize advances technique-based analysis SEIs, thus demonstrate high utility methods characterization systems.
منابع مشابه
Electrolyte and Solid-Electrolyte Interphase Layer in Lithium-Ion Batteries
The supply and the management of the energy are particularly at the centre of our daily concerns and represent a socio-economic priority. Indeed, while cars use fossil fuel as the main source of energy for over a century, the depletion of the oil reserves and the necessity to reduce the carbon dioxide emissions, stimulate the development of electric vehicles. Therefore, one of the main challeng...
متن کاملHow to estimate solid-electrolyte-interphase features when screening electrolyte materials.
Computational screening of battery electrolyte components is an extremely challenging task because very complex features like solid-electrolyte-interphase (SEI) formation and graphite exfoliation need to be taken into account at least in the final screening stage. We present estimators for both SEI formation and graphite exfoliation based on a combinatorial approach using quantum chemistry calc...
متن کاملArtificial solid electrolyte interphase for aqueous lithium energy storage systems
Aqueous lithium energy storage systems address environmental sustainability and safety issues. However, significant capacity fading after repeated cycles of charge-discharge and during float charge limit their practical application compared to their nonaqueous counterparts. We introduce an artificial solid electrolyte interphase (SEI) to the aqueous systems and report the use of graphene films ...
متن کاملHow Solid-Electrolyte Interphase Forms in Aqueous Electrolytes.
Solid-electrolyte interphase (SEI) is the key component that enables all advanced electrochemical devices, the best representative of which is Li-ion battery (LIB). It kinetically stabilizes electrolytes at potentials far beyond their thermodynamic stability limits, so that cell reactions could proceed reversibly. Its ad hoc chemistry and formation mechanism has been a topic under intensive inv...
متن کاملSolid electrolyte interphase in semi-solid flow batteries: a wolf in sheep's clothing.
The formation of the alkyl carbonate-derived solid electrolyte interphase (SEI) enables the use of active materials operating at very cathodic potentials in Li-ion batteries. However, the SEI in semi-solid flow batteries results in a hindered electron transfer between a fluid electrode and the current collector restricting the operating potentials to ca. 0.8 V vs. Li/Li(+) for EC-based electrol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electrochimica Acta
سال: 2021
ISSN: ['1873-3859', '0013-4686']
DOI: https://doi.org/10.1016/j.electacta.2021.139362